LUNG CANCER DETECTION IN LOW-RESOLUTION IMAGES
DOI:
https://doi.org/10.25195/ijci.v49i1.378Keywords:
Convolutional Neural Networks, Deep Learning, Image Processing, Lung Cancer Detection, Machine Learning, Medical Image AnalysisAbstract
One of the most important prognostic factors for all lung cancer patients is the accurate detection of metastases. Pathologists, as we all know, examine the body and its tissues. On the existing clinical method, they have a tedious and manual task. Recent analysis has been inspired by these aspects. Deep Learning (DL) algorithms have been used to identify lung cancer. The developed cutting-edge technologies beat pathologists in terms of cancer identification and localization inside pathology images. These technologies, though, are not medically feasible because they need a massive amount of time or computing capabilities to perceive high-resolution images. Image processing techniques are primarily employed for lung cancer prediction and early identification and therapy to avoid lung cancer. This research aimed to assess lung cancer diagnosis by employing DL algorithms and low-resolution images. The goal would be to see if Machine Learning (ML) models might be created that generate higher confidence conclusions while consuming fractional resources by comparing low and high-resolution images. A DL pipeline has been built to a small enough size from compressing high-resolution images to be fed into an or before CNN (Convolutional Neural Network) for binary classification i.e. cancer or normal. Numerous enhancements have been done to increase overall performance, providing data augmentations, including augmenting training data and implementing tissue detection. Finally, the created low-resolution models are practically incapable of handling extremely low-resolution inputs i.e. 299 x 299 to 2048 x 2048 pixels. Considering the lack of classification ability, a substantial reduction in models’ predictable times is only a marginal benefit. Due to an obvious drawback with the methodology, this is disheartening but predicted finding: very low resolutions, essentially expanding out on a slide, preserve only data about macro-cellular structures, which is usually insufficient to diagnose cancer by itself.
Downloads
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
IJCI applies the Creative Commons Attribution (CC BY) license to articles. The author of the submitted paper for publication by IJCI has the CC BY license. Under this Open Access license, the author gives an agreement to any author to reuse the article in whole or part for any purpose, even for commercial purposes. Anyone may copy, distribute, or reuse the content as long as the author and source are properly cited. This facility helps in re-use and ensures that journal content is available for the needs of research.
If the manuscript contains photos, images, figures, tables, audio files, videos, etc., that the author or the co-authors do not own, IJCI will require the author to provide the journal with proof that the owner of that content has given the author written permission to use it, and the owner has approved that the CC BY license being applied to content. IJCI provides a form that the author can use to ask for permission from the owner. If the author does not have owner permission, IJCI will ask the author to remove that content and/or replace it with other content that the author owns or has such permission to use.
Many authors assume that if they previously published a paper through another publisher, they have the right to reuse that content in their PLOS paper, but that is not necessarily the case – it depends on the license that covers the other paper. The author must ascertain the rights he/she has of a specific license (a license that enables the author to use the content). The author must obtain written permission from the publisher to use the content in the IJCI paper. The author should not include any content in her/his IJCI paper without having the right to use it, and always give proper attribution.
The accompanying submitted data should be stated with licensing policies, the policies should not be more restrictive than CC BY.
IJCI has the right to remove photos, captures, images, figures, tables, illustrations, audio, and video files, from a paper before or after publication, if these contents were included in the author's paper without permission from the owner of the content.