EDIBLE FISH IDENTIFICATION BASED ON MACHINE LEARNING
DOI:
https://doi.org/10.25195/ijci.v49i2.455Keywords:
Edible Fish, High Order Statistical Features, Machine Learning, Poisonous Fish, Second Order Statistical FeaturesAbstract
Automated fish identification system has a beneficial role in various fields. Fish species can usually be identified based on visual observation and human experiences. False appreciation can cause food poisoning. The proposed system aims to efficiently and effectively identify edible fish from poisonous ones based on three machine learning (ML) techniques. A total of 300 fish images are used, collected from 20 species with differences in shapes, sizes, and colors. Hybrid features were extracted and then fed to three types of ML techniques: k-nearest neighbor (K-NN), support vector machine (SVM), and neural networks (NN). The 300 fish images are divided into two: 70% for training and 30% for testing. The accuracy rates for the presented system were 91.1%, 92.2%, and 94.4% for KNN, SVM, and NNs, respectively. The proposed system is evaluated using four terms: precision, sensitivity, F1-score, and accuracy. Results show that the proposed approach achieved higher accuracy compared with other recent pertinent studies.
Downloads
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
IJCI applies the Creative Commons Attribution (CC BY) license to articles. The author of the submitted paper for publication by IJCI has the CC BY license. Under this Open Access license, the author gives an agreement to any author to reuse the article in whole or part for any purpose, even for commercial purposes. Anyone may copy, distribute, or reuse the content as long as the author and source are properly cited. This facility helps in re-use and ensures that journal content is available for the needs of research.
If the manuscript contains photos, images, figures, tables, audio files, videos, etc., that the author or the co-authors do not own, IJCI will require the author to provide the journal with proof that the owner of that content has given the author written permission to use it, and the owner has approved that the CC BY license being applied to content. IJCI provides a form that the author can use to ask for permission from the owner. If the author does not have owner permission, IJCI will ask the author to remove that content and/or replace it with other content that the author owns or has such permission to use.
Many authors assume that if they previously published a paper through another publisher, they have the right to reuse that content in their PLOS paper, but that is not necessarily the case – it depends on the license that covers the other paper. The author must ascertain the rights he/she has of a specific license (a license that enables the author to use the content). The author must obtain written permission from the publisher to use the content in the IJCI paper. The author should not include any content in her/his IJCI paper without having the right to use it, and always give proper attribution.
The accompanying submitted data should be stated with licensing policies, the policies should not be more restrictive than CC BY.
IJCI has the right to remove photos, captures, images, figures, tables, illustrations, audio, and video files, from a paper before or after publication, if these contents were included in the author's paper without permission from the owner of the content.